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Purpose of Genetic Association Studies

 Determine if there is a genetic component contributing to phenotype (i.e. disease)

under investigation (heritability)
* Identify the genetic region/gene/polymorphism causing the disease

* Determine the effect size of the genetic component

Identification of susceptibility variants}
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Genome wide association studies (GWAS)

High-throughput approach scanning marker across the genome - linking genotype to phenotype

Relies on dense sets of genetic markers - Usually SNPs and SNP tags for other variation (via LD)

Usually comparison of variation between affected (cases) and unaffected individuals (controls).

Goal: Identify markers with significant associations to disease
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SNPs may have 2, 3 or 4 alleles (most are biallelic)
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Variant Identification

Study design is key

e Sample size?

* Interest in other factors of disease
(environmental exposures, survival, effect size

Large effect size

Mendelilan diseases
Family-based approac
Highly penetrant

Sporadic diseases
Rare variant

Moderate effect size Substantial effect size

Effect Size

Common disease
Common variant
Small effect size

Small effect size

AC1-2 <1% ~1% >1%
Very rare Rare Low frequency Common

Allele Frequency



Multifactorial determinants of pathogenesis & clinical outcome

® Co-infection
®* Immunosuppression
®  Lifestyle & socioeconomic factors

Environment

Pathogen

®* What is the extent of pathogen genomedive

* s there a link between genotype and phenotype?

,, S

* Does host genetics contribute to susceptibility
to infection/disease outcome?

®* What are the transmission patterns?

®* How do genetic variants influence virus
biological function?



GWAS of Infectious diseases

Phenotypes Studied:

— Case- Control study: Susceptibility, severity, pathogen clearance, response to vaccination,
severe disease

Quantitative trait: Antibody response, viral load, cell count
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GWAS Workflow
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Intensity

Raw data is not a genotypes, but
Allelic hybridization
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Allele B

Genotype Calling

Controls
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Need for high quality data

 Number of variants assayed = errors and genotype or sequence
miscalls are bound to happen

* |f problematic samples not identified and excluded, they can affect the
results of the entire experiment

* |f SNPs with erroneous genotyping or sequencing not identified and
excluded, can produce false signals of associations

 QCsamples and SNPs




Quality Checks

Variable Comments

Genotyping Call Rate Low call rate often correlates with error. Some low call rate SNPs or samples
may still be good.

Genotyping Quality Worse quality score (GenCall) correlates strongly with error rate

Sex concordance Check expectations for X marker heterozygosity and Y marker positive results.
Can estimate error rate.

Sample Relatedness Check for related samples (expected or unexpected)

Mendelian Inheritance Errors | For trio/family data, can identify problem samples and families. Can estimate

error rate.
Replicate concordance Check for consistent genotype calls in duplicate samples
Batch effects Check for genotyping call differences due to plate

Hardy-Weinberg Equilibrium | Violation across all sample groups may indicate error, but can also be a good
test of association

Population Stratification Check for population substructure using the genome-wide data

Nilliam S. Bush © 2014 CASEWESTERNI@SERVE 16 | WILLIAM §.

UNIVERSITY o {, BUsH




Sample QC

Ildentify SNPs with high rates of missingness and heterozygosity
Remove samples deviating from average
Deviations could arise due to several reasons

— Contamination of samples (high heterozygosity

— Inbreeding (low heterozygosity)
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— Ancestral differences
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— Data quality / Poor genotype calling
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Heterozygotes more likely to be missing

Sample missingness
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Sample QC

Identify related / duplicated samples

Relatedness is a problem because of overrepresentation of
selected alleles, which will bias any multivariate analysis Identity-by-state
(correlated datal); e.g. PCA or multivariate regression

— Related samples need to be excluded or taken into account during

subsequent analyses

Related individuals will share more alleles IBS than expected il
by chance, with the degree of additional sharing proportional
to the degree of relatedness. I

Siblings/parent-child
Identical twins
JTh =

[ I T T I ]
05 06 0.7 08 09 1.0

IBS proportion



Sample QC

Population substructure or stratification occurs

when samples have different genetic ancestries P. falciparum ~50k SNPs

PCA - 51249 SNPs, cum. var = 45.37

40

Can lead to spurious associations due to
differences in ancestry rather than true
associations
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Testing for associations using regression models

Outcome Example Model
Continuous IC50 levels Linear regression
Binary Malaria status Logistic regression

e Using asingle SNP in turn, but also can include
— Interactions

— Adjustment for confounders

— Model building and risk prediction strategies
— Diagnostic tools to assess model fit

* Also non-parametric approaches



Genetic Burden
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Genetic models tested in a regression framework

A

>

4

@@

Genetic Burden
Genetic Burden

A

cC CT TT cCC CT TT cC CT TT

Genetic Burden

Genetic Burden




Association Studies
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Association Studies

Direct Association

Tests the genetic variant
directly responsible for causing
the disease.

Indirect Association

Genetic variant tested is not
directly responsible for the
disease, but is located near to
the disease-causing variant and
thus ‘correlated’, or in linkage
disequilibrium (LD).
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Each population has a distinct pattern of genome
variation

> Most SNPs are correlated with surrounding SNPs. This is known
as linkage disequilibrium (LD)

> Linkage disequilibrium reflects the common combinations of
variants (haplotypes) that exist in the population



Haplotypes
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* A haplotype is an observed sequence of variants

* Each population has its own pattern of common haplotypes

* By knowing the pattern of haplotypes within a population we may be
able to impute genotype at an untyped position



Why is LD important in humans?

~10m genetic variants in the human genome, costly to
genotype everything (pre-20127?)

LD = Reduced amount of genotyping required

The availability of whole genome sequencing on large
numbers of samples makes LD redundant



Imputation

TCCGGACAJCTITOTAAGG
TCTGGACACQCTTATARGE | qurerence oanet
TCTGTACACAGGATTTCG | o ="
ACTGGACACAGGATTTGG
ACCGTCTTOCTTCTAACG
TCCGGACACCTTATAAGG

A..G..... Cl. /d. JA. .} Genotyped individual

AC?G. ... CCTTCTAA o o } Imputed individual

Using correlations or ‘recurring patterns’ in the data
to fill in the blanks.



Imputation

00— Studyl
00— Study2

40—000—000000 Study 1 with imputed missing SNPs

* Imputation

Requires GWAS genotypes to be used as scaffold

Requires reference datasets (e.g. www.hapmap.org; www.1000genomes.org)
where the LD (correlation) between SNPs is known and allows imputation of
genotypes for variants not typed on a given array. Increasingly these could
include reference datasets generated by whole-genome sequencing of subsets
of individuals from the populations included in the study

There is specialist software to facilitate imputation as well as meta-analysis

28


http://www.1000genomes.org/

Why impute?

* To predict missing genotypes that haven’t been
dlrectly typed

Increased power. The reference panel is more likely to contain the

causal variant (or a better tag) than a GWAS array.
* Fine-mapping. Imputation provides a high-resolution overview of

an association signal across a locus.
 Meta-analysis. Imputation allows GWAS typed with different arrays
to be combined up to variants in the reference panel.

What if the LD structure in the imputed population is different to the
reference?
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Association sighals across the genome

Manhattan plot: Severe malaria GWAS (n=1,000 cases, 1,500 controls)
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Sickle trait is the strongest known
determinant of severe malaria risk

Relative risk of severe
malaria in children with
HbS AS genotype

lllllllGambia

0.11

gpanuuuus Kenya

0.17

EEEEEEN -
o Malawi

0.08

P=2x103!(n=3630)

e Genetic factors determine 25% of malaria risk in Kenyan
children and sickle trait accounts for only 2% of total variation

(Mackinnon et al, 2005)
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Signals of malaria association in chromosome 11 in The Gambia
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-log10 P-value
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Signals of malaria association in chromosome 11 in The Gambia

*  Genotyped SNP on Affy500K
Imputed using HaphMap YRI as reference
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-log10 P-value
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Signals of malaria association in chromosome 11 in The Gambia
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Going beyond GWAS

eNeed to validate and confirm findings
e Replication studies and meta analysis
*|n silico annotation tools
e |f using genotyping arrays, fine-mapping the causal variant
e Targeted-resequencing
e Transethnic mapping

e Functional studies



Replication

Assay a small subset of SNPs that arose from GWAS scan
ldeally within same population, but often unlikely...

Aim to replicate in other populations for a similarly
defined phenotype

Population structure:

— Problematic, since we will not have genome-wide data to
assess extent of confounding

— Have to rely on informative surrogates if available (e.g. self-
reported ethnicity, language, location)



Meta-analysis

Combine multiple genome-wide scans of
the same phenotype

Consistency of phenotypic definition is
crucial, given expectation of marginal
genetic effects

Genome-wide pooling, publication bias
less of an issue

Summary stats can be used for analysis

G6PD 202A and severe malaria

The Gambia M
The Gambia F
Kenya M
Kenya F
Malawi M
Malawi F
Ghana M
Ghana F

Summary

0.50 0.63

Odds Ratio

1.00 1.26

2.00



Benefits of GWAS Meta-Analysis

* Increased sample sizes for many disease and continuous trait consortia
— increased power to detect new loci
— new pathways and important biological insights gained

— greater power to detect even smaller effect sizes and greater coverage
of allele frequency spectrum

* Power of large collaborations/consortia
— Design better powered replication and fine-mapping experiments

38



Heterogeneity

* Results from meta-analysis of various studies may suggest
between study heterogeneity (e.g. especially when
combining populations of different ancestry)

* How to interpret heterogeneity?
— Differences in study design
— Differences in population structure
— Differences in environmental exposures
— False-positive?



Need to study diverse populations

* Most GWAS have been done in populations of
European ancestry



Hindrance of long LD

e Long LD is valuable at the stage of hunting for associations

e But long LD is a hindrance at fine-mapping — potentially lots of hits

CAD hit region, chromosome 9
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e < LD in African populations lead to > difficulty to detect signals in
initial scan, but easier to fine-map causal variants



Using GWAS To Study Infectious Disease Traits In
Africa

Benefits Challenges
®*High prevalence of infection ®*High genomic diversity
® |dentification of functionally ® Pathogen genetic variation
relevant loci ® Lack of African genetic data &

® Fine mapping of causal variants resources



GWAS pipeline recap

Sample collection
and phenotyping

Selection of > Genotyping and
genotyping array genotype calling

Imputation against
sequence-level
reference panels

!

Replication and
meta-analysis

Transethnic mapping l
across multiple ' sample and SNP '
populations quality control
v |
Identify the causal “ l
variants [ '
Population structure
* analysis
Functional studies || l
Clusterplot checking || < || Association analysis ||

Acknowledgements: YY Teo, S Campino, D Kwiatkowski, Wellcome Trust.



Useful GWAS analysis tools

*  SNP calling
— Samtools : http://samtools.sourceforge.net
— GATK : https://software.broadinstitute.org/gatk
— OptiCall : https://opticall.bitbucket.io

* Data Imputation
— Impute2: http://mathgen.stats.ox.ac.uk/impute/impute v2.html
— Beagle: https://faculty.washington.edu/browning/beagle/beagle.html
— Sanger Imputation Server: https://imputation.sanger.ac.uk

*  Publically available datasets:
— 1000 Genomes: http://www.internationalgenome.org/data
— Exac: http://exac.broadinstitute.org
— UK10K: https://www.uk10k.org
— HRC: http://www.haplotype-reference-consortium.org
— African Genome Variation Project: https://www.sanger.ac.uk/science/collaboration/african-genome-variation-project
— UKBioBank: https://www.ukbiobank.ac.uk

*  Analysis:
—  Plink: http://zzz.bwh.harvard.edu/plink/
— SNPtest: https://mathgen.stats.ox.ac.uk/genetics software/snptest/snptest.html
— GEMMA: http://www.xzlab.org/software.html
— R Packages: https://cran.r-project.org/web/packages/SNPassoc/SNPassoc.pdf
— GCTA: http://cnsgenomics.com/software/gcta/#0Overview
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Case in Point - GWAS of EBV in an African population

Glob Health Epidemiol Genom. 2017 Nov 27;2:e18. doi: 10.1017/gheg.2017.16. eCollection 2017.

Whole-genome association study of antibody response to Epstein-Barr virus in an African
population: a pilot.

Sallah N'2, Carstensen T'+3, Wakeham K*®, Bagni R®, Labo N7, Pollard MO'3, Gurdasani D3, Ekoru K'3, Pomilla C'*3, Young EH'3, Fatumo S'38, Asiki
G* Kamali A%, Sandhu M3, Kellam P2, Whitby D’, Barroso 1!, Newton R?.




Genome-wide association workflow for EBV serological traits in the Uganda GPC

1 Sample and SNP QC filtering

{1557 Individuals with 186 Antibody Phenotypes J “MPooledSNPs Kinship Matrix
| J
[

GWAS
Quantitative Trait and Case-control: linear mixed model in GEMMA

[ Functional annotation of Lead SNPs ] [ Meta-Analysis & Fine Mapping of anti-EBNA-1 IgG

Conditional Analysis
dentify distinct association signals




Heritability of EBV IgG antibody response traits

* Proportion of variation in antibody responses due to host genetics

® h? based on genotype data using FaST-LMM (Heckerman, et al. 2016) Lower hZ estimates in Ugandan population

®*  Adjustment for environmental correlation using GPS data
® Differences in in environmental variation

¢ Differences in gene-environment interactions

100
J

* Uganda ® Differences in variants or allele frequencies/effect

¢ Other Ancestry

80
|

sizes contributing to phenotypic variation

60

Narrow Sense Heritability (%)
20 40
|
P

EBNA-1 VCA

Sallah et al., 2017, Whole-genome association study of antibody response to Epstein-Barr virus in an
Antibody Trait African population: A pilot. Global Health, Epidemiology and Genomics, 2. doi:10.1017/gheg.2017.16



Distinct association signals in the HLA class Il region for anti-EBNA-1 1gG response
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Further analysis shows single signal in Eu and 2 signals in African population

Sallah et al., 2017, Whole-genome association study of antibody response to Epstein-Barr virus in an
African population: A pilot. Global Health, Epidemiology and Genomics, 2. doi:10.1017/gheg.2017.16



Other variants identified that are African-Specific

A. rs183816209
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Highlights the importance of studying diverse populations to uncover
population specific differences
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Sallah et al., 2017, Whole-genome association study of antibody response to Epstein-Barr virus in an
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Future Perspectives

* More data & resources from Africa & other diverse
populations needed to leverage GWAS findings to
uncover meaningful biological insights
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