Genome-Wide Association Studies (GWAS)

London School of Hygiene and Tropical Medicine

Outline

- GWAS overview Utility & Successes
- GWAS Study Design
- Post GWAS Follow up
- Recap
- Case study

Purpose of Genetic Association Studies

- Determine if there is a genetic component contributing to phenotype (i.e. disease) under investigation (heritability)
- Identify the genetic region/gene/polymorphism causing the disease
- Determine the effect size of the genetic component

Genome wide association studies (GWAS)

- High-throughput approach scanning marker across the genome linking genotype to phenotype
- Relies on dense sets of genetic markers Usually SNPs and SNP tags for other variation (via LD)
- Usually comparison of variation between affected (cases) and unaffected individuals (controls).
- Goal: Identify markers with significant associations to disease

SNPs may have 2, 3 or 4 alleles (most are biallelic)

Lots of Success

May 2018 (p≤5X10⁻⁸)

- 69,000 trait associations
- >5000 studies
- 3378 publications

Variant Identification

Sample size? • Interest in other factors of disease • (environmental exposures, survival, effect size Large effect size Mendelilan diseases Family-based approach Highly penetrant Effect Size Sporadic diseases Rare variant Moderate effect size Substantial effect size Common disease **Common variant** Small effect size Small effect size ~1% AC 1-2 <1% >1% Very rare Low frequency Rare Common

Study design is key

Allele Frequency

Multifactorial determinants of pathogenesis & clinical outcome

٠

٠

• How do genetic variants influence virus biological function?

GWAS of Infectious diseases

Phenotypes Studied:

- Case- Control study: Susceptibility, severity, pathogen clearance, response to vaccination, severe disease
- Quantitative trait: Antibody response, viral load, cell count

GWAS Workflow

Raw data is not a genotypes, but Allelic hybridization

Genotype Calling

Genotype Calling

Controls

Need for high quality data

- Number of variants assayed ⇒ errors and genotype or sequence miscalls are bound to happen
- If problematic <u>samples</u> not identified and excluded, they can affect the results of the entire experiment
- If <u>SNPs</u> with erroneous genotyping or sequencing not identified and excluded, can produce false signals of associations
- QC samples and SNPs

Quality Checks

Variable	Comments	
Genotyping Call Rate	Low call rate often correlates with error. Some low call rate SNPs or samples may still be good.	
Genotyping Quality	Worse quality score (GenCall) correlates strongly with error rate	
Sex concordance	Check expectations for X marker heterozygosity and Y marker positive results. Can estimate error rate.	
Sample Relatedness	Check for related samples (expected or unexpected)	
Mendelian Inheritance Errors	For trio/family data, can identify problem samples and families. Can estimate error rate.	
Replicate concordance	Check for consistent genotype calls in duplicate samples	
Batch effects	Check for genotyping call differences due to plate	
Hardy-Weinberg Equilibrium	Violation across all sample groups may indicate error, but can also be a good test of association	
Population Stratification	Check for population substructure using the genome-wide data	
illiam S. Bush © 2014	CASE WESTERN RESERVE UNIVERSITY EST 1826	

Sample QC

- Identify SNPs with high rates of missingness and heterozygosity
- Remove samples deviating from average
- Deviations could arise due to several reasons
 - Contamination of samples (high heterozygosity
 - Inbreeding (low heterozygosity)
 - Ancestral differences
 - Data quality / Poor genotype calling
- Heterozygotes more likely to be missing

Sample QC

- Identify related / duplicated samples
- Relatedness is a problem because of overrepresentation of selected alleles, which will bias any multivariate analysis (correlated data!); e.g. PCA or multivariate regression
 - Related samples need to be excluded or taken into account during subsequent analyses
- Related individuals will share more alleles IBS than expected by chance, with the degree of additional sharing proportional to the degree of relatedness.

Sample QC

PC 2

- Population substructure or stratification occurs when samples have different genetic ancestries
- Can lead to spurious associations due to differences in ancestry rather than true associations
- Imperative to check for population structure within samples
- Identify samples that are outliers
 - Can control for structure if identified, in downstream analysis

P. falciparum ~50k SNPs

PCA - 51249 SNPs, cum. var = 45.37

Testing for associations using regression models

Outcome	Example	Model
Continuous	IC50 levels	Linear regression
Binary	Malaria status	Logistic regression

- Using a single SNP in turn, but also can include
 - Interactions
 - Adjustment for confounders
 - Model building and risk prediction strategies
 - Diagnostic tools to assess model fit
- Also non-parametric approaches

Genetic models tested in a regression framework

Association Studies

Direct Association

Tests the genetic variant directly responsible for causing the disease.

Association Studies

Direct Association

Tests the genetic variant directly responsible for causing the disease.

Indirect Association

Genetic variant tested is not directly responsible for the disease, but is located near to the disease-causing variant and thus 'correlated', or in linkage disequilibrium (LD).

Each population has a distinct pattern of genome variation

- > Most SNPs are correlated with surrounding SNPs. This is known as linkage disequilibrium (LD)
- > Linkage disequilibrium reflects the common combinations of variants (haplotypes) that exist in the population

Haplotypes

..ACTCGACGATTTACGGTACTTAGGAGCATATGCTAC..

- ..ACTCTACGATTTACGGTACTTAGGAGCATATGCTAC..
- ..ACTGTACGATTTACGATACTTAGGAGCATAGGCTAC..
- ..ACTGAACGATTTACGGTACTTAGGAGCATATGCTAC..
- ..ACTGTACGATTTACGGTACTTAGGAGCATATGCTAC..
- ..ACTGTACGATTTACGATACTTAGGAGCATAGGCTAC..
- ..ACTGGACGATTTACGGTACTTAGGAGCATAGGCTAC..
- ..ACTGTACGATTTACGGTACTTAGGAGCATATGCTAC..
- A haplotype is an observed sequence of variants
- Each population has its own pattern of common haplotypes
- By knowing the pattern of haplotypes within a population we may be able to impute genotype at an untyped position

Why is LD important in humans?

- ~10m genetic variants in the human genome, costly to genotype everything (pre-2012?)
- $LD \Rightarrow$ Reduced amount of genotyping required
- The availability of whole genome sequencing on large numbers of samples makes LD redundant

Imputation

Using correlations or 'recurring patterns' in the data to fill in the blanks.

Imputation

Study 1 with imputed missing SNPs

- Imputation
 - Requires GWAS genotypes to be used as scaffold
 - Requires reference datasets (e.g. <u>www.hapmap.org</u>; <u>www.1000genomes.org</u>) where the LD (correlation) between SNPs is known and allows imputation of genotypes for variants not typed on a given array. Increasingly these could include reference datasets generated by whole-genome sequencing of subsets of individuals from the populations included in the study
 - There is specialist software to facilitate imputation as well as meta-analysis

Why impute?

- To predict missing genotypes that haven't been directly typed
 - **Increased power.** The reference panel is more likely to contain the causal variant (or a better tag) than a GWAS array.
 - **Fine-mapping.** Imputation provides a high-resolution overview of an association signal across a locus.
 - **Meta-analysis.** Imputation allows GWAS typed with different arrays to be combined up to variants in the reference panel.

What if the LD structure in the imputed population is different to the reference?

Association signals across the genome

Manhattan plot: Severe malaria GWAS (n=1,000 cases, 1,500 controls)

Sickle trait is the strongest known determinant of severe malaria risk

 $P = 2 \times 10^{-31} (n = 3630)$

 Genetic factors determine 25% of malaria risk in Kenyan children and sickle trait accounts for only 2% of total variation (Mackinnon et al, 2005)

Signals of malaria association in chromosome 11 in The Gambia

Signals of malaria association in chromosome 11 in The Gambia

P~10⁻¹⁴ Genotyped SNP on Affy500K Imputed using HapMap YRI as reference Imputed using sequence data from The Gambia 5 ٠ 6 -log10 P-value ω ဖ 4 2 0 4.0 4.5 6.0 5.0 5.5 6.5 Physical position (Mb)

Signals of malaria association in chromosome 11 in The Gambia

Going beyond GWAS

- Need to validate and confirm findings
 - Replication studies and meta analysis
 - In silico annotation tools
- If using genotyping arrays, fine-mapping the causal variant
 - Targeted-resequencing
 - Transethnic mapping
- Functional studies

Replication

- Assay a small subset of SNPs that arose from GWAS scan
- Ideally within same population, but often unlikely...
- Aim to replicate in other populations for a similarly defined phenotype
- Population structure:
 - Problematic, since we will not have genome-wide data to assess extent of confounding
 - Have to rely on informative surrogates if available (e.g. selfreported ethnicity, language, location)

Meta-analysis

- Combine multiple genome-wide scans of the same phenotype
- Consistency of phenotypic definition is crucial, given expectation of marginal genetic effects
- Genome-wide pooling, publication bias less of an issue
- Summary stats can be used for analysis

Benefits of GWAS Meta-Analysis

- Increased sample sizes for many disease and continuous trait consortia
 - increased power to detect new loci
 - new pathways and important biological insights gained
 - greater power to detect even smaller effect sizes and greater coverage of allele frequency spectrum
- Power of large collaborations/consortia
 - Design better powered replication and fine-mapping experiments

Heterogeneity

- Results from meta-analysis of various studies may suggest between study heterogeneity (e.g. especially when combining populations of different ancestry)
- How to interpret heterogeneity?
 - Differences in study design
 - Differences in population structure
 - Differences in environmental exposures
 - False-positive?

Need to study diverse populations

 Most GWAS have been done in populations of European ancestry

Hindrance of long LD

- Long LD is valuable at the stage of hunting for associations
- But long LD is a hindrance at fine-mapping potentially lots of hits

 < LD in African populations lead to > difficulty to detect signals in initial scan, but easier to fine-map causal variants

Using GWAS To Study Infectious Disease Traits In Africa

Benefits

- High prevalence of infection
- Identification of functionally relevant loci
- Fine mapping of causal variants

Challenges

- High genomic diversity
- Pathogen genetic variation
- Lack of African genetic data & resources

GWAS pipeline recap

Acknowledgements: YY Teo, S Campino, D Kwiatkowski, Wellcome Trust.

Useful GWAS analysis tools

- SNP calling
 - Samtools : <u>http://samtools.sourceforge.net</u>
 - GATK : <u>https://software.broadinstitute.org/gatk</u>
 - OptiCall : <u>https://opticall.bitbucket.io</u>
- Data Imputation
 - Impute2: <u>http://mathgen.stats.ox.ac.uk/impute/impute_v2.html</u>
 - Beagle: <u>https://faculty.washington.edu/browning/beagle/beagle.html</u>
 - Sanger Imputation Server: <u>https://imputation.sanger.ac.uk</u>
- Publically available datasets:
 - 1000 Genomes: <u>http://www.internationalgenome.org/data</u>
 - Exac: <u>http://exac.broadinstitute.org</u>
 - UK10K: <u>https://www.uk10k.org</u>
 - HRC: <u>http://www.haplotype-reference-consortium.org</u>
 - African Genome Variation Project: <u>https://www.sanger.ac.uk/science/collaboration/african-genome-variation-project</u>
 - UKBioBank: <u>https://www.ukbiobank.ac.uk</u>
- Analysis:
 - Plink: <u>http://zzz.bwh.harvard.edu/plink/</u>
 - SNPtest: <u>https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html</u>
 - GEMMA: http://www.xzlab.org/software.html
 - R Packages: <u>https://cran.r-project.org/web/packages/SNPassoc/SNPassoc.pdf</u>
 - GCTA: <u>http://cnsgenomics.com/software/gcta/#Overview</u>

Case in Point - GWAS of EBV in an African population

Glob Health Epidemiol Genom. 2017 Nov 27;2:e18. doi: 10.1017/gheg.2017.16. eCollection 2017.

Whole-genome association study of antibody response to Epstein-Barr virus in an African population: a pilot.

Sallah N^{1,2}, Carstensen T^{1,3}, Wakeham K^{4,5}, Bagni R⁶, Labo N⁷, Pollard MO^{1,3}, Gurdasani D^{1,3}, Ekoru K^{1,3}, Pomilla C^{1,3}, Young EH^{1,3}, Fatumo S^{1,3,8}, Asiki G⁴, Kamali A⁴, Sandhu M^{1,3}, Kellam P², Whitby D⁷, Barroso I¹, Newton R⁴.

Genome-wide association workflow for EBV serological traits in the Uganda GPC

Heritability of EBV IgG antibody response traits

Proportion of variation in antibody responses due to host genetics

Adjustment for environmental correlation using GPS data

h² based on genotype data using FaST-LMM (Heckerman, et al. 2016)

Lower h² estimates in Ugandan population

- Differences in in environmental variation
- Differences in gene-environment interactions
- Differences in variants or allele frequencies/effect sizes contributing to phenotypic variation

Sallah et al., 2017, Whole-genome association study of antibody response to Epstein-Barr virus in an African population: A pilot. *Global Health, Epidemiology and Genomics, 2*. doi:10.1017/gheg.2017.16

Distinct association signals in the HLA class II region for anti-EBNA-1 IgG response

Further analysis shows single signal in Eu and 2 signals in African population

Sallah *et al.*, 2017, Whole-genome association study of antibody response to Epstein-Barr virus in an African population: A pilot. *Global Health, Epidemiology and Genomics, 2*. doi:10.1017/gheg.2017.16

Other variants identified that are African-Specific

Sallah et al., 2017, Whole-genome association study of antibody response to Epstein-Barr virus in an African population: A pilot. *Global Health, Epidemiology and Genomics, 2*. doi:10.1017/gheg.2017.16

Future Perspectives

- More data & resources from Africa & other diverse populations needed to leverage GWAS findings to uncover meaningful biological insights
- Large cohorts allow comprehensive analysis of infection – with host and pathogen genomes isolated from the same individuals

