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Purpose of Genetic Association Studies
• Determine if there is a genetic component contributing to phenotype (i.e. disease) 

under investigation (heritability) 

• Identify the genetic region/gene/polymorphism causing the disease 

• Determine the effect size of the genetic component 



..ACTCGACGATTTACGGTACTTAGGAGCATACGCTAC..

..ACTCTACGATTTACGGTACTTAGGAGCATACGCTAC..

..ACTGTACGATTTACGATACTTAGGAGCATATGCTAC..

..ACTGTACGATTTACGGTACTTAGGAGCATATGCTAC..

..ACTGTACGATTTACGGTACTTAGGAGCATATGCTAC..

..ACTGTACGATTTACGATACTTAGGAGCATAGGCTAC..

..ACTGTACGATTTACGATACTTAGGAGCATAGGCTAC..

..ACTGTACGATTTACGGTACTTAGGAGCATATGCTAC..

..ACTGTACGATTTACGATACTTAGGAGCATAGGCTAC..

Genome wide association studies (GWAS)

SNPs may have 2, 3 or 4 alleles (most are biallelic)

• High-throughput approach scanning marker across the genome - linking genotype to phenotype

• Relies on dense sets of genetic markers - Usually SNPs and SNP tags for other variation (via LD)

• Usually comparison of variation between affected (cases) and unaffected individuals (controls).

• Goal: Identify markers with significant associations to disease 



NHGRI GWA Catalog
www.genome.gov/GWAStudies
www.ebi.ac.uk/fgpt/gwas/ 

May 2018 (p≤5X10-8) 
• 69,000 trait associations
• >5000 studies
• 3378 publications

Lots of Success

Visscher et al; 2017, 10 Years of GWAS 
Discovery: Biology, Function, and 
Translation



Variant Identification

Mendelilan diseases

Family-based approach

Highly penetrant

Sporadic diseases

Rare variant

Substantial effect size

Common disease

Common variant

Small effect size
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AC 1-2

Low frequency

<1% ~1% >1%

Large effect size

Moderate effect size

Small effect size

Study design is key

• Sample size?

• Interest in other factors of disease 

(environmental exposures, survival, effect size 



Environment

Multifactorial determinants of pathogenesis & clinical outcome

• Co-infection
• Immunosuppression
• Lifestyle & socioeconomic factors

• Does host genetics contribute to susceptibility 
to infection/disease outcome?

• How do genetic variants influence virus 
biological function?

Pathogen

• What is the extent of pathogen genome diversity?

• Is there a link between genotype and phenotype?

• What are the transmission patterns?

Host 



GWAS of Infectious diseases

Phenotypes Studied:
– Case- Control study: Susceptibility, severity, pathogen clearance, response to vaccination, 

severe disease
– Quantitative trait: Antibody response, viral load, cell count

IL23R
(Leprosy)

FCGR2A 
(Kawasaki disease)

CFH
(Meningococcal sepsis)

CXCR6
(HIV control)

MHC HLA region
(Dengue, EBV, HBV, HCV, HIV, leprosy)

RAB32
(Leprosy)

RIP2K
(Leprosy)TNFSF15

(Leprosy)

PLCE1
(Dengue)

HBB
(Malaria)

CCDC122 / 
Chr13orf31
(Leprosy)

NOD2
(Leprosy)

Gene Desert
(TB)

IL28B
(HCV)

P = 5 x 10-8



GWAS Workflow
Sample Collection 

& Phenotype 
Determination

Post-GWAS
Genotyping or 
Whole genome 

sequencing
Quality Control GWAS
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Raw data is not a genotypes, but
Allelic hybridization



Genotype Calling

Controls Cases



Genotype Calling

Controls Cases



Need for high quality data

• Number of variants assayed Þ errors and genotype or sequence 
miscalls are bound to happen

• If problematic samples not identified and excluded, they can affect the 
results of the entire experiment 

• If SNPs with erroneous genotyping or sequencing not identified and 
excluded, can produce false signals of associations

• QC samples and SNPs



Quality Checks



Sample QC

• Identify SNPs with high rates of missingness and heterozygosity
• Remove samples deviating from average
• Deviations could arise due to several reasons

– Contamination of samples (high heterozygosity)
– Inbreeding (low heterozygosity)
– Ancestral differences
– Data quality / Poor genotype calling

• Heterozygotes more likely to be missing



Sample QC

• Identify related / duplicated samples
• Relatedness is a problem because of overrepresentation of 

selected alleles, which will bias any multivariate analysis 
(correlated data!); e.g. PCA or multivariate regression
– Related samples need to be excluded or taken into account during 

subsequent analyses

• Related individuals will share more alleles IBS than expected 
by chance, with the degree of additional sharing proportional 
to the degree of relatedness.

Identical twins
Siblings/parent-child



Sample QC

• Population substructure or stratification occurs 
when samples have different genetic ancestries

• Can lead to spurious associations due to 
differences in ancestry rather than true 
associations

• Imperative to check for population structure 
within samples

• Identify samples that are outliers 
– Can control for structure if identified, in downstream 

analysis

Africa

Southeast
Asia

PNG

P. falciparum  ~50k SNPs

Data from Ocholla et al. 2014



• Using a single SNP in turn, but also can include
– Interactions
– Adjustment for confounders
– Model building and risk prediction strategies
– Diagnostic tools to assess model fit

• Also non-parametric approaches

Outcome Example Model
Continuous IC50 levels Linear regression
Binary Malaria status Logistic regression

Testing for associations using regression models 



Genetic models tested in a regression framework
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Association Studies

Direct Association

Tests the genetic variant 
directly responsible for causing 
the disease.



Association Studies

Direct Association

Tests the genetic variant 
directly responsible for causing 
the disease.

Indirect Association

Genetic variant tested is not 
directly responsible for the 
disease, but is located near to 
the disease-causing variant and 
thus ‘correlated’, or in linkage 
disequilibrium (LD).



SNPs

> Most SNPs are correlated with surrounding SNPs. This is known 
as linkage disequilibrium (LD)

> Linkage disequilibrium reflects the common combinations of 
variants (haplotypes) that exist in the population

Each population has a distinct pattern of genome 
variation



..ACTCGACGATTTACGGTACTTAGGAGCATATGCTAC..

..ACTCTACGATTTACGGTACTTAGGAGCATATGCTAC..

..ACTGTACGATTTACGATACTTAGGAGCATAGGCTAC..

..ACTGAACGATTTACGGTACTTAGGAGCATATGCTAC..

..ACTGTACGATTTACGGTACTTAGGAGCATATGCTAC..

..ACTGTACGATTTACGATACTTAGGAGCATAGGCTAC..

..ACTGGACGATTTACGGTACTTAGGAGCATAGGCTAC..

..ACTGTACGATTTACGGTACTTAGGAGCATATGCTAC..
• A haplotype is an observed sequence of variants
• Each population has its own pattern of common haplotypes
• By knowing the pattern of haplotypes within a population we may be 

able to impute genotype at an untyped position

Haplotypes



• ~10m genetic variants in the human genome, costly to 
genotype everything (pre-2012?)

• LD Þ Reduced amount of genotyping required
• The availability of whole genome sequencing on large 

numbers of samples makes LD redundant

Why is LD important in humans?



TCCGGACACCTTCTAAGG
TCTGGACACCTTCTAAGG
TCTGTACACAGGATTTCG
ACTGGACACAGGATTTGG
ACCGTCTTCCTTCTAACG
TCCGGACACCTTCTAAGG

A..G.....C..C..A..
AC?G....CCTTCTAA..

Reference panel:

HapMap YRI haplotypes

Genotyped individual

Imputed individual

Using correlations or ‘recurring patterns’ in the data 
to fill in the blanks.

Imputation



Imputation

28

Study 1

Study 2

Study 1 with  imputed missing SNPs

• Imputation
• Requires GWAS genotypes to be used as scaffold
• Requires reference datasets (e.g. www.hapmap.org; www.1000genomes.org) 

where the LD (correlation) between SNPs is known and allows imputation of 
genotypes for variants not typed on a given array. Increasingly these could 
include reference datasets generated by whole-genome sequencing of subsets 
of individuals from the populations included in the study

• There is specialist software to facilitate imputation as well as meta-analysis

http://www.1000genomes.org/


Why impute?
• To predict missing genotypes that haven’t been 

directly typed
• Increased power.  The reference panel is more likely to contain the 

causal variant (or a better tag) than a GWAS array.
• Fine-mapping.  Imputation provides a high-resolution overview of 

an association signal across a locus.
• Meta-analysis.  Imputation allows GWAS typed with different arrays 

to be combined up to variants in the reference panel.

What if the LD structure in the imputed population is different to the 
reference?



Association signals across the genome
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Very interesting

… but some false positives

Quite interesting

… some false negatives

Manhattan plot: Severe malaria GWAS (n=1,000 cases, 1,500 controls)



• Genetic factors determine 25% of malaria risk in Kenyan 
children and sickle trait accounts for only 2% of total variation 
(Mackinnon et al, 2005)

Relative risk of severe 
malaria in children with 

HbS   AS genotype
Gambia 0.11
Kenya 0.17
Malawi 0.08

P = 2 x 10-31 (n = 3630)

Sickle trait is the strongest known 
determinant of severe malaria risk







P ~ 10-14



Going beyond GWAS

•Need to validate and confirm findings

• Replication studies and meta analysis

•In silico annotation tools

• If using genotyping arrays, fine-mapping the causal variant

• Targeted-resequencing

• Transethnic mapping

• Functional studies



Replication

• Assay a small subset of SNPs that arose from GWAS scan
• Ideally within same population, but often unlikely…
• Aim to replicate in other populations for a similarly 

defined phenotype
• Population structure:

– Problematic, since we will not have genome-wide data to 
assess extent of confounding

– Have to rely on informative surrogates if available (e.g. self-
reported ethnicity, language, location)



• Combine multiple genome-wide scans of 
the same phenotype

• Consistency of phenotypic definition is 
crucial, given expectation of marginal 
genetic effects

• Genome-wide pooling, publication bias 
less of an issue

• Summary stats can be used for analysis

Meta-analysis

G6PD 202A and severe malaria

Odds Ratio
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0.50 0.63 1.00 1.26 2.00

The Gambia M

The Gambia F

Kenya M

Kenya F

Malawi M

Malawi F

Ghana M

Ghana F

Summary



Benefits of GWAS Meta-Analysis
• Increased sample sizes for many disease and continuous trait consortia

– increased power to detect new loci
– new pathways and important biological insights gained
– greater power to detect even smaller effect sizes and greater coverage 

of allele frequency spectrum
• Power of large collaborations/consortia

– Design better powered replication and fine-mapping experiments

38



Heterogeneity
• Results from meta-analysis of various studies may suggest 

between study heterogeneity (e.g. especially when 
combining populations of different ancestry)

• How to interpret heterogeneity?
– Differences in study design
– Differences in population structure
– Differences in environmental exposures
– False-positive?

39



Need to study diverse populations

• Most GWAS have been done in populations of 
European ancestry



• Long LD is valuable at the stage of hunting for associations

Hindrance of long LD

• But long LD is a hindrance at fine-mapping – potentially lots of hits

• < LD in African populations lead to > difficulty to detect signals in 
initial scan, but easier to fine-map causal variants 



Using GWAS To Study Infectious Disease Traits  In 
Africa 

Benefits
•High prevalence of infection
• Identification of functionally 

relevant loci
•Fine mapping of causal variants

Challenges
•High genomic diversity
•Pathogen genetic variation
•Lack of African genetic data & 

resources



GWAS pipeline recap

Sample collection 
and phenotyping

Selection of 
genotyping array

Genotyping and 
genotype calling

Sample and SNP 
quality control

Population structure 
analysis

Association analysisClusterplot checkingReplication and 
meta-analysis

Imputation against 
sequence-level 

reference panels

Transethnic mapping 
across multiple 

populations

Identify the causal 
variants

Functional studies

Acknowledgements: YY Teo, S Campino, D Kwiatkowski, Wellcome Trust.



• SNP calling 
– Samtools : http://samtools.sourceforge.net
– GATK : https://software.broadinstitute.org/gatk
– OptiCall : https://opticall.bitbucket.io

• Data Imputation
– Impute2: http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
– Beagle: https://faculty.washington.edu/browning/beagle/beagle.html
– Sanger Imputation Server: https://imputation.sanger.ac.uk

• Publically available datasets:
– 1000 Genomes: http://www.internationalgenome.org/data
– Exac: http://exac.broadinstitute.org
– UK10K: https://www.uk10k.org
– HRC: http://www.haplotype-reference-consortium.org
– African Genome Variation Project: https://www.sanger.ac.uk/science/collaboration/african-genome-variation-project
– UKBioBank: https://www.ukbiobank.ac.uk

• Analysis:
– Plink: http://zzz.bwh.harvard.edu/plink/
– SNPtest: https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html
– GEMMA: http://www.xzlab.org/software.html
– R Packages: https://cran.r-project.org/web/packages/SNPassoc/SNPassoc.pdf
– GCTA: http://cnsgenomics.com/software/gcta/#Overview

Useful GWAS analysis tools

http://samtools.sourceforge.net/
https://software.broadinstitute.org/gatk/
https://opticall.bitbucket.io/
http://mathgen.stats.ox.ac.uk/impute/impute_v2.html
https://faculty.washington.edu/browning/beagle/beagle.html
https://imputation.sanger.ac.uk/
http://www.internationalgenome.org/data
http://exac.broadinstitute.org/
https://www.uk10k.org/
http://www.haplotype-reference-consortium.org/
https://www.sanger.ac.uk/science/collaboration/african-genome-variation-project
https://www.ukbiobank.ac.uk/
http://zzz.bwh.harvard.edu/plink/
https://mathgen.stats.ox.ac.uk/genetics_software/snptest/snptest.html
http://www.xzlab.org/software.html
https://cran.r-project.org/web/packages/SNPassoc/SNPassoc.pdf
http://cnsgenomics.com/software/gcta/


Case in Point - GWAS of EBV in an African population



Genome-wide association workflow for EBV serological traits in the Uganda GPC



Heritability of EBV IgG antibody response traits

Lower h2 estimates in Ugandan population
• Proportion of variation in antibody responses due to host genetics

• h2 based on genotype data using FaST-LMM (Heckerman, et al. 2016)

• Adjustment for environmental correlation using GPS data

Uganda

• Differences in in environmental variation

• Differences in gene-environment interactions

• Differences in variants or allele frequencies/effect 

sizes contributing to phenotypic variation

Sallah et al., 2017, Whole-genome association study of antibody response to Epstein-Barr virus in an 
African population: A pilot. Global Health, Epidemiology and Genomics, 2. doi:10.1017/gheg.2017.16



Distinct association signals in the HLA class II region for anti-EBNA-1 IgG response

EUR Lead SNP

UG Lead SNP

Sallah et al., 2017, Whole-genome association study of antibody response to Epstein-Barr virus in an 
African population: A pilot. Global Health, Epidemiology and Genomics, 2. doi:10.1017/gheg.2017.16

Further analysis shows single signal in Eu and 2 signals in African population



Other variants identified that are African-Specific

Sallah et al., 2017, Whole-genome association study of antibody response to Epstein-Barr virus in an 
African population: A pilot. Global Health, Epidemiology and Genomics, 2. doi:10.1017/gheg.2017.16

Highlights the importance of studying diverse populations to uncover 
population specific differences



Future Perspectives
• More data & resources from Africa & other diverse 

populations needed to leverage GWAS findings to 
uncover meaningful biological insights

• Large cohorts allow comprehensive analysis of 
infection – with host and pathogen genomes 
isolated from the same individuals

Pathogen sequence 
variation

Host genome 
variation

Biological function

Neneh Sallah


