De novo assembly

London School of Hygiene and Tropical Medicine

Some aspects of the course

Population genetics

Whole genome Association studies

One ultimate goal is a "finished genome"

Why assemble?

- Reference genomes unavailable
- Rapidly changing organisms
- Highly variable/unstable regions
- Investigate structural variants
 - Insertions (e.g. novel insertions)
 - Deletions
 - Repeat regions
 - Inversions
- In silico genotype (e.g. reconstruct a MIRU-VNTR)
- Novel transcripts in a transcriptome

M. tuberculosis repeat region poorly mapped

De novo assembly of reads that are single end mapped or unmapped to fill in gaps

De novo assembly of bacterial genomes e.g. M. tuberculosis

- Members of the PE/PPE family are thought to be virulence factors, which participate in evasion of the host immune response.
- Typically PE/PPE regions are excluded from analyses
- *De novo* assembled whole genomes, including PE/PPE genes across 518 clinical isolates (lineages 1-4).

Constructing a genome can be viewed as a jigsaw puzzle

The genomic jigsaw puzzle

- A sample *genome* is a picture
- Each short read is a jigsaw piece
- Mapping uses a known picture close to the actual picture (a reference) to help placing reads
 - Bigger pieces (longer reads) make it easier to reconstruct picture
 - Knowing the approximate distance between two pieces (paired-end reads) makes it easier to place them
 - Damaged pieces (*sequencing errors*) make it difficult
 - Spotting the differences between genomes identifies variants

The genomic jigsaw puzzle

- Assembly creates the picture without the reference
 - No reference means inaccuracies in pictures (genomes) are not considered
 - No reference means that poor quality regions not assembled
 - More difficult to overcome hard to sequence regions
 - DNA sequence reads may fit together in more than one way because of repetitive sequences within the genome.
 - Methods aim to create the most complete reconstruction possible without introducing errors.
- For assembly and mapping
 - Additional information assists to improve genome characterisation (e.g. read length, paired-end reads)
 - Junk in junk out quality control is important

Using mapping and assembly

- Assembly is providing complementary information to mapping
- Map contigs to a reference or compare to another genome
 - Contigs are like long reads
 - Confirm small variants
 - Identify larger variants
- Reconstruct difficult to map genomic regions
- Filter reads for post-processing
 - Keeping only those reads in interesting contigs and performing mapping

Long read assembly

- Methods for "Sanger" reads where coverage is low
- Greedy "Add reads together that have large overlaps" (e.g. Celera Assembler, ARACHNE, PCAP)
- Second generation long reads (e.g. 700bp 454 technology) – need to account for sequencing errors
- Use Overlap/Layout/Consensus (OLC) approaches (e.g. Newbler assembler)
- PacBio RS II has the longest read lengths (>10kb)
 - PacBio-only *de novo* assembly (OLC HGAP algorithm).
 - Hybrid *de novo* assembly. Using a combination of PacBio and short read data
- Short read sequencing is much cheaper, and the larger number of reads requires other algorithms

The Problem

- Input
 - Sequence data is composed of many short reads (50 to 150+ base pairs)
 - Often these are *paired* together
- Output
 - Reads are joined together to form *contigs*
 - Contigs are joined to form *supercontigs* or *scaffolding*
- Computationally intensive
 - More so than mapping
 - Potentially need many CPUs, large amounts of RAM
 - The solution involves a graph theory approach

	Reads and 2 mate pairs
	Contigs after reads got joined
nnn	Scaffold

Solutions to processing many short reads

- Greedy
 - Add reads together that have large overlaps
- Overlap/Layout/Consensus (OLC)
 - Nodes = Reads, Edges = Overlap
 - Good for long reads (200+ base pairs)
 - Slow
- De Bruijn Graphs
 - Nodes = k-mers, Edges = Overlap
 - Good for large datasets
 - Current state of the art technique

De Bruijn Graphs are used for short read data

By looking at contiguous subsets of short sequences (k'mers) we can construct graphs to describe links between reads

The Plan

- What?
 - Joining short reads
- How?
 - A De Bruijn Graph theory approach implemented by specialist software (e.g. *velvet* software)
- Post-processing...
 - Use contigs to answer biological questions
 - Identify/verify structural variants
 - Create reference genomes

Evaluation of an assembly

In the absence of a high-quality reference genome, new genome assemblies are often evaluated on the basis of:

- the number of scaffolds and contigs required to represent the genome
- the proportion of reads that can be assembled
- the absolute length of contigs and scaffolds
- the length of contigs and scaffolds relative to the size of the genome
- The most commonly used metric is N50, the smallest scaffold or contig above which 50% of an assembly would be represented.

"Final graph has 978 nodes and n50 of 10508, max 54529, total 1374552, using 1397134/1510408 reads."

De Novo Assembly using Velvet

```
bwa mem -k 20 -c 100 -L 20 -U 20 -M -T 50 tb.fasta 'data/Mtb_'$lsSample'_1.fastq.gz' 'data/Mtb_'$lsSample'_2.fastq.gz' > data/$lsSample.sam
samtools view -bt tb.fasta.fai data/$lsSample.sam > data/$lsSample.unsorted.bam
  samtools sort data/$lsSample.unsorted.bam data/$lsSample
samtools index data/$lsSample.bam
  mkdir -p $lsSample
  cd $1sSa
  VelvetOptimiser.pl --s 19 --e 75 -f '-fastq.gz -shortPaired data/Mtb_'$lsSample'_1.fastq.gz data/Mtb_'$lsSample'_2.fastq.gz'
  for k in "${laBestK[@]}"
    velveth k$k $k -fastq.gz -shortPaired 'data/Mtb_'$lsSample'_1.fastq.gz' 'data/Mtb_'$lsSample'_2.fastq.gz'
velvetg k$k -cov_cutoff $liCoverage -ins_length $liMean -ins_length_sd $liSD -read_trkg no -min_contig_lgth 150 -exp_cov auto -scaffolding ye$
  cd kślik
  abacas.pl -r ../../data/tb.fasta -q contigs.fa -p nucmer -b -d -a -m -N -g sample1 -o ../k$lik
  cd ...
  bwa index -a is kśliK.fasta
  bwa mem -k 20 -c 100 -L 20 -U 20 -M -T 50 k$liK.fasta data'/Mtb_'$lsSample'_1.fastq.gz' data'/Mtb_'$lsSample'_2.fastq.gz' > k$liK.sam
  samtools faidx k$liK.fasta
  samtools view -bt k$liK.fasta.fai k$liK.sam > k$liK.unsorted.bam
  samtools sort k$liK.unsorted.bam k$liK
  samtools index kslik.bam
  cd ..
samtools view data/sample1.bam H37Rv:79000-87500 -o data/sample1_candidate.bam -b -h
velveth deletion 45 -shortPaired -bam data/sample1 candidate.bam
velvetg deletion -read_trkg no -ins_length 340 -ins_length_sd 120 -exp cov 3
```

- Evaluation of the assembly using genomic coverage and summaries of contig lengths
- Many other approaches (e.g. SPAdes) sometimes a compromise between accuracy and speed

Contig ordering

• Using a reference genome to order contigs (*e.g.* Abacas) and transfer annotations (*e.g. RATT, Prokka*)

Mapping to the reference

• Visualisation of the assembly using the reference genome in Artemis ACT

Structural Variant Validation

	► Formatting options	⊳ Download			You Tube How to read this page	Blast report description
			Blast 2 sequences			
o (4411537 letters)						
Query ID lcl 46271 Description tb Molecule type nucleic acid Query Length 4411537			Subject ID Description Molecule type Subject Length Program	3 subjects ▶ <u>See details</u> nucleic acid n/a BLASTN 2.2.28+ ▶ <u>Citation</u>		
Other reports: > Search Summary [Taxong	omy reports] [Distance tre	e of results]				
Graphic Summary						
	Query 79100	er to see the defline, <40 4) 80049	click to show alignments Color key for alignment scores 0-50 50-80 80-20 80999 81949	0 <mark>>=200</mark> 82899 83849		
Descriptions Sequences producing significant align	mente.					

• Using *blast* to validate structural variants